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EFFECTS OF SUCTION AND INJECTION 
ON SELF-SIMILAR SOLUTIONS OF SECOND-ORDER 

BOUNDARY-LAYER EQUATIONS 

NOOR AFZAL and SHABBIR AHMAD 
Department of Mechanical Engineering, Aligarh Muslim University, Aligarh, India 

(Receioed 16 May 1974 and in recisedform 27 September 1974) 

Abstract-Effects of suction and injection on self-similar boundary-layer flows at moderately large 
Reynolds numbers are studied. The general form of normal velocity at the wall is assumed to be 

L’,= R-io,,+R-‘v,z+.... 

In addition to the usual five second-order effects (due to longitudinal curvature, transverse curvature, 
displacement speed, external vorticity, temperature gradient) an additional sixth effect due to v,~ is 
linearly separated. Both the cases of the momentum and heat transfer are studied. For heat transfer 
two cases of prescribed wall temperature and that of insulated wall with full similarity with viscous 

dissipation considered. Numerical solutions are displayed graphically and critically discussed. 
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NOMENCLATURE 

Bernoulli function; 
functions defined by equations (23-28); 

suction parameter defined by equation (15); 

Eckert number defined by lJf/t,-- H, (0); 
first-order dimensionless velocity in 
s-direction; 

first-order dimensionless temperature; 
second-order corrections to f and g; 

functions governing heat transfer due to 
prescribed wall temperature; 
functions governing heat transfer due to 
viscous dissipation; 

temperature function; 
a number defined as zero for two- 
dimensional flow and unity for 
axisymmetric flow; 

longitudinal curvature of the body; 
distance normal to the surface (see Fig. 1); 
stretched (Prandtl) normal coordinate R*n; 

static pressure; 
distance from the axis of the axisymmetric 

body; 
recovery factor defined by (45); 
first-order and second-order contributions 
to the recovery factor; 
characteristic Reynolds number of the flow; 
distance along the surface (see Fig. 1); 
static temperature; 

first-order and second-order temperatures; 
velocity along s-direction; 
U2(.s, 0), first-order and second-order 
velocity along s-direction in outer flow 
evaluated at the wall; 
velocity along n-direction; 
second-order velocity in outer flow at the 
wall defined by hm=(ci - Nui,); 

normal velocity at the surface. 

Greek symbols 

6 first-order displacement thickness defined 

by (38); 
6”) 

B> ’ 

second-order correction to 6; 
Falkner-Skan pressure gradient parameter; 

r, s> Gortler’s variables defined by (9, 10); 

Ai, functions defined by equation (35); 

0. Prandtl number. 

Superscripts 

8, 

differentiation with respect to q; 
displacement speed; 

e. temperature gradient in the free stream; 

1, longitudinal curvature; 

r, transverse curvature; 

c. vorticity ; 

M’, second-order normal velocity at the surface. 

FIG. 1. Coordinate system. 

1. INTRODUCTION 

THE PROBLEM of boundary-layer flows with suction 
and injection is of great importance in engineering 
applications: boundary-layer control, transpiration 
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cooling and other diffusional operations. It has been 
studied extensively and their references can be found 
in the books by Schlichting [l], Eckert [2] and 

Rosenhead [3] etc. These studies have employed the 
classical boundary-layer equations and hence are valid 
for very high value of Reynolds number. At mod- 

erately large Reynolds number, however, it is well- 

known that the boundary-layer equations require 
certain higher order corrections (Van Dyke [4]), attri- 
buted to arise from (i) longitudinal curvature, (ii) 

transverse curvature, (iii) displacement speed, (iv) ex- 

ternal vorticity and (v) temperature gradient in the 

on-coming stream. 
For an impermeable walI (u, = 0) the general struc- 

ture of self-similarity for second-order effects has been 
studied by Afzal and Oberai [5] and Werle and Davis 
[6]. Afzal and Raisinghani [7] have studied the heat 
transfer problem for full similarity with viscous 

dissipation. 
It is the purpose of the present work to study the 

effect of suction and injection on self-similar solutions 

of second-order momentum and energy-equations with 
full similarity in viscous dissipation terms. In the 
framework of second-order theory a general expression 
for normal velocity v, (u, < 0 for suction and r,,, > 0 

for injection) is taken as 

v, = R-+vwl +R-‘u,~ + . . . , (1) 

where v,~ is the first-order normal velocity and u,,,~ 
the second-order normal velocity at the surface. As the 
second-order boundary-layer equations are linear, 
hence in addition to the above mentioned five effects 
one more effect due to v,~ has been separated. 

Earlier Wannous and Sparrow [S] have analysed the 
transverse curvature effect with suction and injection 

by studying momentum transfer for axisymmetric flow 

along a circular cylinder. In the variables of present 
work their study correspond to At = 0, p = 0. 

2. FORMULATION 

The Navier-Stokes and the energy equation in usual 
non-dimensional notations are 

div U = 0, (2) 

U.grad U +grad P = -R-l curl curl U, (3) 

U.grad T- a-‘R-‘VzT = R-l grad U.def U. (4) 

Where R is the characteristic Reynolds number, CJ the 
Prandtl number. The boundary conditions at the 
surface are 

u = 0, v = u,(s) @a, b) 

T = t,(s) or grad T= 0. (5c) 

Where v,(s) is given by equation (1). Far upstream the 
flow has to approach prescribed, may be non-uniform 
velocity and temperature fields. 

The second-order boundary-layer equations are ob- 
tained from Navier-Stokes equations by the method of 
matched asymptotic expansions [4,7]. In this method 
two limits are defined: an outer limit (defined as n 
fixed, R + co) and the inner limit (N = nR* fixed, 

R + 0~)). The corresponding two expansions for a 
typical variable are given below 

Outer expansion : t$ = @,,+R-tQ2i-... (6a) 

Inner expansion : +=cj~+R-~q5~+.... (6b) 

Thus first and second-order boundary-layer equations 
obtained through matching are as follows. 

First-order boundary-layer equations: 

(&), + (r+& = 0, 

~1b+~1kv-- ~l(~,O)~ls(s,O)-~lNN = 0, 

ultljy+L’ltlN-lJ 
-1 

tirw- 4N = 0, 

Ul (s, 0) = 0, vi (s, 0) = VW1 (s), (7) 

u1(s,N) - V,(s,O) as N-co, 

t,(s, 0) = tw(s) or flN(s,O) = 0, 

tl(s,N) N H,(O) as N + co. 

Second-order boundary-layer equations : 

(&)s + (IJ ‘u 2)N 
= -[r~~cose/r)Nu~],-[r~~K+jcosB/r)Nu~]~, 

~lU2s+~2Uls+UiU2N+V2~lN-U2NN 

=~[~~l~l,-~l~l-~~l(s,O)~~,(~,O)+ulN] 

- 
[ 

KNU:(s, O)+ K 
,l 

m 

U:(s, 0) - u: dN 
N 1 s +u,,jcos8/r-r'B;(O)~2(S,O) +[WdWJ~(~>O)],, (8) U1t2s+Udtls+C'lt2N$U2tlN-u -1 

t2NN--2UlNU2N 

= K(Nultl,+K’tljv -2utulN)+o-‘jcosBtlN/r, 

u2(s, 0) = 0, uz(s, 0) = 4vz 7 

u2(s, N) w NKUl (s, 0) + r’NB; (0) + U2(s, 0) 

as N-+w, 

tZ(s, 0) = 0 or t2N(& O) = 0, 

Yy, =o as N-co. 

In the following analysis all the capital letters Ur (s, 0), 
Hl (s, 0), Bl (0) etc. will be used without their arguments, 

i.e. as CJl, HI, B1 etc. 

3. SIMILARITY ANALYSlS 

In the present analysis, Gortler’s variables 

5 = ’ U, r2jds, 
s 

rjN U1 
~ 

r = Jm 
(9310) 

0 

have been used. 

3.1. First-order problem 

The well known form of the stream function which 
gives similarity for frrst-order momentum equation is 

$l(s, N) = (X)*f(rl). (II) 

Using (9), (10) and (1 I), the momentum equation 
reduces to 

f”‘+Jf”+/I(l -f/2) = 0, (12) 

f(0) = C, f’(0) = 0, f’(co) = 1. (13a, b,c) 

Here b is the Falkner-Skan pressure gradient and C, 
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the first-order suction parameter are assumed con- The functions &‘s are defined as 

stants. They are defined as Bi = ,/(25)K/(r’Ui), B, = J(2t)jcos 0/(r”U,), (23,24) 

a=$!!$ c = -o,i(25)*/(Uir’). (14,15) Bd = u2/Ul, (25) 
1 

The equation (12) is the well known Falkner-Skan & = ,/(25)B;lU:, B, = JCWWJ:, (26) 
equation whose solutions with the boundary conditions 

(13) have been studied extensively [ 1,2,3]. Be = J(25)H;l(t, - Hi), (27) 
For temperature profile, the similarity variable is 

rl(s,N) = (t,-H1)[61(‘1)+Egz(rl)l +HI. (16) 
B, = - U,Z &MU1 rj). (28) 

In writing down the relation (16), the linearity of energy 
Here B1 arises due to longitudinal curvature, B, due 

equation is exploited and as such the equations for the 
to transverse curvature, Bd due to displacement speed, 

functions gi and g2 are independent of 
B, due to external vorticity, B, due to temperature 
gradient and B, due to normal velocity uw2. Using 

E [ = U:l(r,, - Hdl (21) and (22) the second-order equations may be written 

Table 1. Values of functions used in second-order equations (29-34) 

i Ai ai bi di Ai Bi Di 

Longitudinal 1 A1 -fJf”‘+[(A1+B-l)(f”+ f’) 
/’ 

0 -tt -a-‘(f/g;)’ 0 -o-l(rlg;)‘+f,,(-~fn+2~‘) 
curvature +(W+h)(84+41 U+B) 
Transverse t Ar -~(2/?+f”‘)+f”+ff’-A,qf” 0 q -cr-‘(qg;)’ 0 -u-‘(~g;)‘+f”(‘lf”+2~“) 
curvature 
Displacement d Ad -28-A‘, 0 1 0 0 0 
speed 
External 0 l-28 -6 0 rl 0 0 0 
vorticity 
Temperature e l-28 0 0 0 0 1-h 0 
gradient in 
on-coming 
stream 
Suction velocity w A, 0 1 0 0 0 0 
VW2 

the Eckert number. For full similarity with viscous 
dissipation E has to be constant, which yields 
I&,-H, = 28. The governing equations for gi and g2 
take the form 

a-ig; +fg\ -2/?f’g, = 0, (17) 

Sl(O) = 19 631(~) = 0, @a, b) 

o-‘g’;+fg;-2/3f’g2+fv2 = 0, (19) 

92(O) = 0 = $32(m). (2% b) 

3.2. Second-order problem 
The second-order boundary-layer equations are 

linear and hence can be divided into a number of 
simpler problems. For flows over an impermeable 
surface, it has been divided into the five effects, men- 
tioned earlier. When velocity vw2 # 0, an additional 
sixth effect due to vw2 can also be linearly separated. 
For the six effects the second-order stream function 1c/2 
and temperature t2 are assumed as 

$2 = J(25) C Bi F”‘(q) (21) 
i 

t2 = (tw-H,)CBi[GY'(rl)+EGY'(~)I 

where i = 1, t, d, II, e, w. 

(22) 

in the operator form as 

F(i)“’ + f F(i)” - (28 + Ai)f ‘F(i)’ + (1 + Ai) f “F(i) = oi, (29) 

F”‘(0) = bi, F”“(0) = 0, 

F”‘(n)-di as q--tc~, (30) 

a-‘Gy’“+fGy”-(2fi+A,)f’Gy’ 

+ (1 + Ai)F’“g; - 2pF”“gi = Ai, (31) 

Gy’(O) = 0, Gy’(q) - Bi as ‘+a~. (32) 

a-‘G$i”’ +fGy"- (2/?+Ai)f'G$' 
+ (1 +Ai)F(i)g; -2pF(i)'g, +2f"~(i)" - - Di, (33) 

G$)(O) = 0 = G$'(co), (34) 

where subscript i takes the values 1, t, d, u, e and w. 
For various second-order problems the functions 
Ai ) ai) bi) di, Ai) Bi and DC are given in Table 1. Here 
Ai is defined by the equation 

Ai = (25/Bi)(aBilX) i = 1, t, d, u, w, e (35) 

and has to be constant for self similar solutions. 
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The skin friction t in nondimensional form is 

z = rjU,2(2R~)-f[,f”‘(0)+R~f~BiF(i”‘(O)+...], 

and the displacement thickness is 

A = R-” J(2~)/(lju,)h 

+ R-‘[J(2e)U,/(r’U:)G’d’+2ir/(r2’U:) 

x (rjBl/Ul 6’“‘+ KC?“’ +jcos H/rP 

-S’“‘c,,jJ(25)~]. 

Where 

s=q-j 

The expression for heat transfer is given by 

4 = g-‘rju,(2~)-+R-’ 

X [g;(O)+Eg$_(O)+R-“CBi 

x (Gi”~(o)+I:;;:‘)~(o): +...I, 

These results were successively employed to integrate 

(36) 
the second-order linear equations and the results are 
believed to be correct to five decimal places. The 

present results compare well with the available no 
suction results of [7]. The equations have been solved 

for various values of suction parameter C in the range 
of -0.6 < C < 0.6. The ranges for other parameters 

are -7.5 < A,, A,. A,,, A,,, < 4, fl = 0, 0.5 and 1 and 

(37) 
0 = 0.7,3 and 5. Results for second-order contributions 
to skin-friction F”(O), heat transfer G;(O) and recovery 

factor r2 are displayed graphically. The results for G;(O) 
can be obtained from those for G; (0) and r2 

Figure 2(a) shows skin-friction F”(0) vs A, for b = 0.5 
and two fixed values of suctions parameter C = 0.5 

(38) and -0.5. For A, < 0, we observe many singularities. 
The location of first singularity for C = 0 (no suction 
or injection) is also shown in the same graph by a 

vertical arrow which is at Al = - 3.1 (Afzal and Oberai 

[5]). For C = 0.5 (suction) this singularity occurs at 
A, = - 3.5 and for C = - 0.5 (injection) at Al = - 2.72. 

The effect of suction (injection) on the location of 
singularity is to increase (decrease) the value of 
negative A,. It may be noted that the effect of suction 

(39) is qualitatively the same as that of favourable pressure 
gradient, i.e. for a given suction if p increases the value _A~~ ~~ The recovery temperature t, is defined as temperature 

of the wall for which there is no heat transfer at the 
of A, increase in magnitude. Figures 2(b) and 2(c) show 

surface. It is generally expressed in terms of dimen- 
the effects of a given suction or injection on heat transfer 

sionless recovery factor rf, defined as 16 
I I =05 

rf=2(t,-H,)/U1?=rl-tR~)r2t... (40) I I 1 u=o7 

I I 
c=o.5 - 

where r, and r2 are first-order and second-order 
c=_o.5 --- 

recovery factors, given by 

r, = -2g;(O)/g;(O), r2 = C Biro’, 
1 

r$’ = 2[g;(O)Gf’(O) -g;(0)G$“(O)]/g;2(O), 

i = 1, 1, d, 0, \V, 

$1 = 2Gl”/g;(O). 

The expression for heat transfer (44) for full similarity 
with viscous dissipation can further be simplified in 

terms oft, as 

ill I I 1 I / / _ 
-6 -4 -2 0 2 4 

4 
FIG. 2(a). Longitudinal curvature solutions: effects of suc- 
tion and injection on locations of singularities in skin friction. 

q = -o-Jviu I ~,v-~,WW+ ( 

X [g;(O)+R-~CBiGi”“(O)+...], 

i = 1, t, d, 1;, M‘. 

This shows that the heat transfer is zero when t, = t,. 

4. RESULTS AND DISCUSSION 

The first and second-order boundary-layer equations 
are two point boundary value problems and have been 
integrated numerically by Runge-Kutta-Gill method 
on IBM 7044computer. In order to limit the truncation 
error, a conservative value of step size Aq = 0.05 was 
selected (Smith [lo]). The first-order momentum 
equation is non-linear, its solutions accurate to five 
places of decimals were obtained by using the values 
of Stewart and Probe [ 111 as the initial guess values. 

FIG. 2(b). Longitudinal curvature solutions: effects of suc- 
tion and injection on location ofsingularities in heat transfer. 
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-6 -4 -2 0 2 4 

A, 

-06 -04 -02 0 02 0.4 0.6 

C 

FIG. 2(c). Longitudinal curvature solutions: effects of SUC- FIG. 3(b). Longitudinal curvature solutions: effects of suc- 
tion and injection on locations of singularities on recovery tion and injection on heat transfer 

factor. 

G;(O) and recovery factor r2 respectively. Here the 
approximate location of first singularity for C = 0 is 
at AI = -2.75, (shown by arrow) for C = 0.5 at 
A1 = -3.0 and for C = -0.5 at A1 = -2.32. It is to 
be observed that for a fixed value of suction parameter 

C, the singularity in G;(O) and r2 occurs at lower 
values of negative A1 when compared to the corre- 
sponding skin friction, results. This is due to the fact 
that the critical value (eigenvalue) for the homogeneous 

energy problem is lower than the corresponding 
momentum problem. For transverse curvature, dis- 

placement speed problems, the effect of suction and 
injection on the location of singularities is similar to 
those described as above and may be referred to [9]. 
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The effect of suction parameter C for longitudinal 
curvature, transverse curvature, displacement speed, 
external vorticity and temperature gradient problems 
on skin friction F”(O), displacement thickness, heat 
transfer G;(O) and recovery factor rz are shown in 
Figs. 3(a-c) to Figs. 7(a-b). From these figures, it is 

observed that the relative variation of second-order 
heat transfer with suction parameter C decreases as b 
increases for a given value of 0. 
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FIG. 3(c). Longitudinal curvature solutions: 
effects of suction and injection on recovery 

factor. 
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FIG. 3(a). Longitudinal curvature solutions: effects of suc- 
tion and injection on skin friction and displacement 
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FIG. 4(a). Transverse curvature solutions: effects of suction 
and injection on skin friction and displacement thickness. 
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FIG. 4(b). Transverse curvature solutions: 
effects of suction and injection on heat 

transfer. 
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FIG. 4(c). Transverse curvature solutions: 
effects of suction and injection on recovery 

factor. 
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FIG. 5(a). Displacement speed solutions: effects of suction 
and injection on skin friction and displacement thickness. 

;/y ._._._.-i._._. 
/ v I I I I 
-04 -02 0 o-2 0.4 06 

C 

FIG. 5(b). Displacement speed solutions: effects of suction 
and injection on heat transfer. 
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FIG. 5(c). Displacement speed solutions: effects 
of suction and injection on recovery factor. 
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FIG. 6(a). External vorticity solutions: effects of suction and 
injection on skin friction and displacement thickness. 



Effects of suction and injection on self-similar solutions 613 

” ” 1 ’ ” ’ ” 
- 0.6 -04 -0.2 0 0.2 0.4 

C 
FIG. 6(b). External vorticity solutions: effects of 

suction and injection on heat transfer. 

3 \. -’ 
2 F~ CT=5 .,‘\. a=3 
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-b6 -0.4 -02 0 0.2 0.4 0.6 

C 

FIG. 6(c). External vorticity solutions: effects 
of suction and injection on recovery factor. 

C 
FIG. 7(a). Temperature gradient solutions: effects 

of suction and injection on heat transfer. 

c 
FIG. 7(b). Temperature gradient solutions: effects 

of suction and injection on recovery factor. 

We now consider the second-order effect due to v,2 
shown in Figs. 8(a-c). The suction velocity u, has both 
first and second-order components v,~ and v,~. In 
order to distinguish between the two components, we 
first describe the effect due to vw2 when the first-order 
suction velocity vwl (or C) is zero, i.e. v, _ O(R-‘). 
Figure 8(a) shows the second-order effect due to v,z 
on skin friction and displacement thickness plotted 
against the parameter C. For C = 0, A, > 0, it is 
observed that second-order contribution to skin fric- 
tion increases as fi decreases. As the first and second- 
order contributions are of the same sign, the second- 
order suction increases the total skin friction. This 
trend is qualitatively similar to classically well-known 
first-order suction effect. However for A, < 0 no such 
statement can be made due to the presence of singu- 
larities mentioned earlier. The effect of first-order 
suction parameter C will now be described on second- 
order contribution. As C increases, the second-order 
contribution to skin friction for any fixed value of B and 

FIG. 8(a). Solutions for second-order suction effect: skin 
friction and displacement thickness. 
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FIG. 8(b). Solutions for second-order suction effect: heat 
transfer. 

FIG. 8(c). Solutions for second-order suction 
effect: recovery factor. 

A, also increases. The rate of increase becomes more 
pronounced as A, increases for a given value of 
P(=O.S). 

Figures 8(b) and 8(c) show second-order con- 
tributions to heat transfer and recovery-factor respec- 
tively. For the case v, - O(R-‘), we note that the 
second-order contribution to heat transfer (recovery 
factor) increases in magnitude as p increases (decreases) 

for A,, > 0. The interaction of first-order and sccond- 
order suction shows that the second-order contribution 
to heat transfer and recovery-factor increases in magni- 
tude as C increases. The rate of increase becomes 

more and more pronounced for decreasing values of/j 
and increasing values of (r. 
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NOTE ADDED IN PROOF 

Alternatively, instead of equations (21) and (22), the 
second-order effects can also be separated in such a way 
that a part of displacement effect is included in the suction 
effect, i.e. 

Y, = (25)t[B,F”‘(~)+B,F”)(~)+B,F:d)(rl) 

f(B .-&C~2)F~‘(~)] x 

along with asimilar expression for t2. This has the advantage 
that for a special case A, = A, = 0. the displacement 
equations for F* (d) etc. admit the following closed form 
solutions: 

F:“’ = (qf” +f)!2 

G:“] = r/g; 12 

Further, the equations for F:“’ etc. still satisfy the equations 
identical to those of F’“’ etc. 


